THE GLOBAL SPECIALIST FOR PVC COMPOUNDS

DATA SHEET

hy-vin[©] VR78900

Description Rigid PVC Extrusion Compound

Colour White & Opaque Colours

Application General Purpose Profiles for Internal and External Use

Characteristics High impact. Enhanced flame retardant properties.

Form Pellets

TYPICAL PROPERTIES

	Test Method	Units	Value			
General Properties						
Density (varies with colour)	EN ISO 1183-1A	kg/m³	1430			
Vicat softening point	EN ISO 306 B50	°C	79.0			
Mechanical properties						
Tensile Stress at Yield (50mm/min)	EN ISO 527-1	MPa	42			
Tensile Strain at Break (50mm/min)	EN ISO 527-1 %		20			
Izod Impact Strength (23°C)	EN ISO 180/A	kJ/m ²	(57)			
Other Properties						
Thermal stability (180°C)	EN ISO 182-1	min	150			
Oxygen Index Value	EN ISO 4589-2	% 46				

Issue 3 August 2022

Information in this publication and otherwise supplied to users is based on our general experience and is given in good faith, but because of the many particular factors which are outside our knowledge and control and affect the use of products, no warranty is given, nor is to be implied with respect of such information. Users should make their own enquiries to determine the suitability of products for any particular application. Freedom from patents, copyright and registered designs cannot be assumed.

GRADUS

Gradus Ltd Park Green Macclesfield, Cheshire SK11 7LZ UK Tel: 01625 428922

www.gradus.com

Date: 11/03/2020

Subject: Impact strength of Gradus Extruded Profiles

Gradus wish to confirm that each of the following profiles are all extruded using the same PVC formulation, a proprietary grade of material known as VR789:

WGS125

WGA100

D200

CHR160

CHR110

CGH5090

CGH7590

CGS5090

Given that each of the profiles listed above also share the same nominal thickness, 2mm, the impact test result for one of these profiles is representative of the impact strength which would be seen on each of the other profiles when tested to the same test method.

It is Gradus' belief that the impact strength reported in the 'Falling Dart test according to EN 6603-2 of the WGS200' as tested in May 2017 is representative of ongoing production of WGS200 profiles as well as each of those other profiles listed above.

This is for your kind information. GRADUS

Kind regards,

Ciaran Duffy

Process Technician

Dart Impact Testing of Two Materials to EN ISO 6603-1

Report Reference: 13208A

Prepared for: Ciaran Duffy

Gradus Limited, Chapel Mill, Park Green, Macclesfield, Cheshire SK11 7LZ

G Howe 16/06/2017

Company Limited in England and Wales No: 4627765

DART IMPACT TESTING OF TWO MATERIALS TO EN ISO 6603-1

1. INTRODUCTION

Gradus Ltd requested the dart impact resistance of two PVC sheet materials be assessed to EN ISO 6603-1.

There are various options within the standard. For example, whether samples are clamped or unclamped and whether impact energy is varied using a constant weight from different drop heights or a variable weight from a fixed drop height. Testing was conducted with the samples clamped and the impact energy varied by drop height.

2. SAMPLES

Sample plaques of nominal dimension 75mm x 75mm were received at ipolytech 30th May 2017, designated as follows:

30 off plaques - Endure (Purple) – approx. 1.8 mm thick 30 off plaques - Design(Wood) – approx. 2.0mm thick

The plaques had a textured and smooth surface and it was confirmed with the client that impact would be applied to the textured surface.

Any of this material remaining after testing will be stored for 6 months from the date of this report prior to disposal unless other instructions are received from Gradus Limited.

3. EXPERIMENTAL

Each material was tested in accordance with EN ISO 6603-1- Method A at a test temperature of 23±2°C. All samples were tested clamped over a 40mm diameter orifice. Impacts were performed with a non-lubricated, 20mm diameter, hemispherical tipped, striker. A constant striker mass of 5.154 kg was used.

Incremental changes in energy were achieved by using a constant mass and changing the height from which the striker was dropped. The approximate impact strength was determined during a pre-test phase and the step height used during testing set to produce approximately a 5% change in impact energy.

Step heights of 25 mm were used for the Design samples and 15 mm for the Endure samples

20 test pieces were impacted and the 50% impact-failure energy (E₅₀) calculated as per ISO 6603-1.

4. RESULTS

The test data is presented in Appendix I. This is summarised as the E₅₀ values in Table 1 below:

Sample	Average Thickness (mm)	Impact Failure Energy E50 (J)				
Endure	1.85	15				
Design	1.90	40				

Table 1. 50% Impact Failure Energy

Appendix I Test data

Endure (Purple)	Sample	t1	t2	t3		Tav		Energy J		Pass/fail
, , ,	9		1.878	1.863		1.87	315.00	15.910		Pass
	10	1.849	1.852	1.852		1.85	330.00	16.668	shatter	Fail
	11	1.853	1.84	1.846		1.85	315.00	15.910	shatter	Fail
	12	1.857	1.866	1.854		1.86	300.00	15.153		Pass
	13	1.857	1.869	1.868		1.86	315.00	15.910	shatter	Fail
	14	1.859	1.872	1.861		1.86	300.00	15.153		Pass
	15	1.842	1.85	1.839		1.84	315.00	15.910		Pass
	16	1.866	1.85	1.862		1.86	330.00	16.668	shatter	Fail
	17	1.852	1.86	1.847		1.85	315.00	15.910	shatter	Fail
	18	1.851	1.856	1.848		1.85	300.00	15.153		Pass
	19	1.885	1.858	1.842		1.86	315.00	15.910		Pass
	20	1.875	1.877	1.854		1.87	330.00	16.668	shatter	Fail
	21	1.872	1.873	1.901		1.88	315.00	15.910	shatter	Fail
	22	1.816	1.806	1.815		1.81	300.00	15.153	shatter	Fail
	23	1.829	1.828	1.826		1.83	285.00	14.395	shatter	Fail
	24	1.852	1.864	1.866		1.86	270.00	13.637		Pass
	25	1.807	1.809	1.823		1.81	285.00	14.395	shatter	Fail
	26	1.872	1.857	1.869		1.87	270.00	13.637		Pass
	27	1.895	1.862	1.859		1.87	285.00	14.395		Pass
	28	1.85	1.863	1.869		1.86	300.00	15.153		Pass
					Average	1.85				
	Mass	5.154								
	Ha	270.00			351 T					
	DH	15			301	<u> </u>		= _	<u> </u>	
	Height	Frequency	zi	ni Zi			_	_		
	270	0	0	0	251					
	285	2	1	2	201					
	300	1	2	2	202					
	315	4	3	12	151					
	330	3	4	12	101					
		20								
	A=	28			51					

10 304.50

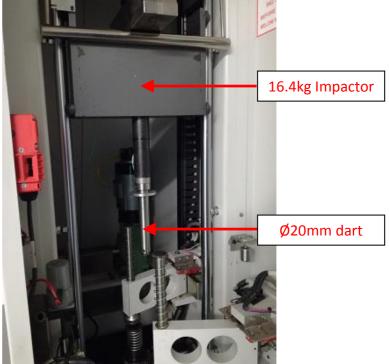
15

H50=

					Dart
Design(Wood)	Sample	t1	t2	t3	Tav Energy J Pass/fail
	11	1.923	1.9	1.904	1.91 675.00 34.094 Pass
	12	1.897	1.92	1.899	1.91 700.00 35.356 Pass
	13	1.977	1.931	1.928	1.95 725.00 36.619 Pass
	14	1.821	1.845	1.855	1.84 750.00 37.882 Pass
	15	1.912	1.887	1.904	1.90 775.00 39.145 break Fail
	16	1.937	1.929	1.929	1.93 750.00 37.882 Pass
	17	1.871	1.889	1.89	1.88 775.00 39.145 shattered Fail
	18	1.984	1.916	1.928	1.94 750.00 37.882 shattered Fail
	19	1.912	1.842	1.822	1.86 725.00 36.619 Pass
	20	1.924	1.838	1.847	1.87 750.00 37.882 Pass
	21	1.936	1.915	1.919	1.92 775.00 39.145 Pass
	22	1.968	1.908	1.916	1.93 800.00 40.407 Pass
	23	1.925	1.916	1.923	1.92 825.00 41.670 shattered Fail
	24	1.926	1.922	1.925	1.92 800.00 40.407 shattered Fail
	25	1.866	1.827	1.818	1.84 775.00 39.145 Pass
	26	1.848	1.849	1.838	1.85 800.00 40.407 Pass
	27	1.897	1.891	1.918	1.90 825.00 41.670 shattered Fail
	28	1.854	1.853	1.862	1.86 800.00 40.407 Pass
	29	1.867	1.886	1.893	1.88 825.00 41.670 Pass
	30	1.96	1.941	1.932	1.94 850.00 42.933 shattered Fail
					Average 1.90
	Mass	5.154			
	Ha	675.00			901
	DH	25			
					801
	Height	Frequency	zi	ni Zi	701
	675	0	0	0	601
	700	0	1	0	F04
	725	0	2	0	501
	750	1	3	3	401
	775	2	4	8	301
	800	1	5	5	
	825	2	6	12	201
	850	1	7	7	101
					1
					1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
	A=	35			
	A= N=	35 7			

Testing Department

GRADUS


Impact Strength Assessment

Falling Dart Impact Test according to EN 6603-2

Page 1 of 1

Equipment

Rosand Impact Tester fitted with Ø20mm ball-nosed dart and an impactor mass of 16.4kg

Method

The EN6603-2 standard stipulates the method for determining the energy to impact failure and this corresponds to the method implemented in the software of the Rosand impact tester. The values reported by the tester are calculated by a fully automated calculation system.

Samples

All samples tested are 75mm x 75mm plaques, have been conditioned to the ambient temperature of the test laboratory prior to test and are clamped into position using an industry standard internal Ø40mm clamping ring. At least 10 samples of each material are tested before reporting the test result.

Results

Material	Gradus SureProtect Endure
Batch	170218/028/Clay
Date Tested	12/05/2017
Pass/Fail Criteria	>15 Joules
Result	Pass

Gradus Limited Park Green Macclesfield Cheshire SK11 7LZ England UK Tel: 01625 428922 Fax: 01625 433949 For enquiries outside the UK and Eire contact Gradus International on +44 (0)1625 613780